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Figure 1: A demonstration of our reinforcement learning (RL) framework to assist 3D UI placement in dynamic mixed
reality environments. According to a RL agent’s observations of user and environmental states (i.e., distance to surrounding
environment, the user, and the user’s pose), the RL agent generates a force vector (see red arrow) to maneuver the content in 3D
via a physics simulation, with the goal of maximizing the accumulated reward for users in mobile scenarios.

ABSTRACT
Mixed Reality (MR) could assist users’ tasks by continuously inte-
grating virtual content with their view of the physical environment.
However, where and how to place these content to best support
the users has been a challenging problem due to the dynamic na-
ture of MR experiences. In contrast to prior work that investigates
optimization-based methods, we are exploring how reinforcement
learning (RL) could assist with continuous 3D content placement
that is aware of users’ poses and their surrounding environments.
Through an initial exploration and preliminary evaluation, our
results demonstrate the potential of RL to position content that
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maximizes the reward for users on the go. We further identify fu-
ture directions for research that could harness the power of RL for
personalized and optimized UI and content placement in MR.
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1 INTRODUCTION
Mixed Reality (MR) technologies have the potential to assist users’
tasks by integrating digital content pervasively with the users’ view
of their physical environment [21]. Users are empowered to rely
on the digital information continuously on-the-go in a variety of
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everyday tasks. However, determining the optimal placement of a
3D user interface (UI) in the physical space poses a non-trivial chal-
lenge due to the increased degree of freedom and dynamic nature
of MR use cases. Since virtual information could be displayed any-
where and anytime in 3D space, it may hinder real-world activities
by demanding unnecessary user attention and manual interactions
(e.g., moving or hiding digital content) if not designed carefully and
updated continuously. Such issues become prominent especially
when users are mobile, as an initially useful placement may lose
its utility after users alter their poses or spatial positions. In order
for MR UIs to better support the users, there are two unsolved
challenges: (1) they must seamlessly adapt to dynamic contextual
changes such as user’s position, pose, and surroundings, which
traditional rule-based adaptations fall short of doing [31]; and (2)
they must take multiple adaptation goals into consideration in real
time, such as visibility, reachability, and comfort [17, 25].

To realize such adaptive MR UI behaviors, recent research for-
mulates the problem as multi-objective optimization [9, 10, 16, 17,
22, 25, 26, 32]. User’s goals are formulated as a set of objective
functions and placements are selected that maximize/minimize
these objectives. However, there are two theoretical challenges
with optimization-based solutions: (1) the optimization needs to be
re-solved each time users move themselves in space, which may be
computationally costly and inefficient; (2) these solutions may fail
to generalize to other environments or user movement patterns,
requiring either reconfiguration or modifications of objectives and
constraints.

In this work, we take a novel perspective to address the 3DUI
placement challenge in MR. Inspired by its successful applications
in dynamic real-world environment such as robotics and automated
vehicles, deep reinforcement learning (RL) is employed to make
decisions about placement of 3D UIs in dynamic scenarios. As com-
pared to optimization-based approaches in which objectives are
defined and observed more intuitively, RL demands careful crafting
of the reward functions and a large amount of trials and errors dur-
ing training. In contrast, it could be more advantageous in handling
complex and dynamic scenarios with opportunities to incorporate
user preferences, especially when decisions need to be made se-
quentially. By observing the environments and user states, our
proposed RL agent learns to take actions, observe the outcome, and
formulate a policy that maximizes long-term reward for the users
through its own interactive experiences. To our knowledge, this
work is the first that employed RL to place virtual information in 3D
MR space when users are mobile. We describe in detail the training
configuration and the setup of the models. To assess the potential
of our RL-driven UI placement approach in MR, we validate the
performance and generalizability of our trained model with a pre-
liminary evaluation. Our results demonstrate the potential of RL
to address the 3D UI placement challenges in MR environments
by helping users decide optimal placements that maximize the ac-
cumulative reward on-the-go. Additionally, we highlight future
possibilities about how to further improve our proposed method
with state-of-the-art RL methodologies.

In summary, the contributions of our work are three-fold: (1)
a novel approach proposed to adapt MR UI placement through
state-of-the-art RL algorithms; (2) a preliminary simulation-based

evaluation of our proposed method; (3) future directions identified
that leverage RL for personalized and adaptive UI placement in MR.

2 RELATEDWORK
2.1 Adaptive user interfaces in mixed reality
As compared to traditional 2D screens, AR/MR opens more possi-
bilities for information displays due to its higher dimensionality
and rich interaction paradigms. View management refers to how
virtual information should be displayed and managed in the user’s
viewport [3]. Research in view management has primarily investi-
gated label placement, which investigates how 2D UIs should be
arranged in the screen plane [1, 2, 30, 36, 42], with less emphasis on
content registered in the 3D environment. Grubert and colleagues
proposed the concept “Pervasive AR”, in which they argue that fu-
ture AR/MR experiences should be context-aware to continuously
adapt to the users’ environments and tasks [21]. However, it has
been challenging to develop such interfaces due to the dynamic
nature of MR use cases, the frequent conflicts in user goals, and the
theoretically infinite possible placements in 3D space.

MRTK1 provides solver components to decide placement of UIs
based on one or more objectives. However, the adaptations are
mostly rule-based executions. The objectives are solved only se-
quentially whichmakes it less applicable in dynamicmulti-objective
scenarios. Recent work proposes to realize such adaptive behav-
iors for 3D content in MR through optimization, which have been
widely studied in 2D applications to decide the layout of UI ele-
ments [14, 37, 40, 44]. For example, Lindlbauer et al. implemented
an adaptive UI system in MR using integer programming taking
into account the user’s task and cognitive load [32]. Belo et al. ex-
plored placement of UIs in MR that maximizes ergonomic comfort
for users [16]. Cheng et al. explored automatic placement of MR
content while optimizing visibility, consistency, and semantic cor-
relations using linear programming [10]. Similar methods were
applied in a recent work by Han et al. to blend MR windows on
top of physical object meshes, taking into account the properties of
physical objects [22]. However, adapations in these work mostly
took place in a discrete solution space, which may not guarantee
optimality when users are moving continuously. To enable adapta-
tions in continuous spaces, Belo et al. explored simulated annealing
for solving non-linear objectives for MR UI adaptations. Johns et al.
explored genetic algorithms for deriving optimal placements along
the pareto frontier [25, 26]. This work demonstrated the potential
of optimization-based approach for UI adaptations in MR.

In this work, we take a new perspective by applying RL to assist
with content placement in MR environments, by training an AI
agent how to “drive” a piece of UI content to maximize user reward.

2.2 Reinforcement learning for interface
adaptations

RL is a category of machine learning that enables intelligent agents
to learn how to take actions in a dynamic environment with the
goal to maximize long-term rewards temporally downstream. It has
demonstrated great potential in scenarios where decisions need to
be planned sequentially, such as robotics [29], automotive vehicles

1https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/
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[18, 47], gaming [28], and crowd simulations [6]. We argue that
RL could be a suitable approach to address the 3D UI placement
challenge in MR due to its dynamic and user-centric nature. Unlike
supervised learning which relies on large amount of labelled data,
RL learns by observing and interacting with the environment on it-
self, which makes it powerful (1) for handling complex, unexpected,
and dynamic scenarios, (2) when current decisions can influence
future states, and (3) when large-scale labelled training datasets are
challenging to obtain. Due to such properties, RL has been recently
explored as a new strategy to achieve interface adaptations in both
2D and MR spaces. Todi et al. used model-based RL to adapt item
ranking in a 2D menu [43]. Yu et al. studied using RL to determine
for timing of intelligent assistance during object selection tasks in
MR [46]. Gebhardt et al. explored using RL to adapt the visibility of
2D labels in VR based on gaze data [20]. Chen et al. employed RL
for AR label placement in the view plane during basketball matches
[8], which we consider the most relevant to our work. Their re-
sults show promising potential of RL to intelligently assist 2D UI
placements in 3D environments when the user’s viewport is static.
However, there has been a lack of exploration of how RL could be
applied to assist 3D UI placement and adaptation, where (1) UIs
could be registered anywhere in the 3D physical world beyond a
2D camera plane and (2) the user’s egocentric viewport dynami-
cally changes in mobile scenarios. Our work sheds light on such
possibilities by training a RL agent that is capable of maneuvering
UIs in 3D constantly according to its observations of how the users’
and environmental states change.

3 PROBLEM FORMULATION
3.1 Environment & User Simulation
To construct a realistic training environment for the RL agent to
freely explore and learn, we utilize the Replica dataset [41], which
contains high-fidelity 3D scans of indoor scenes with segmented
objects and bounding boxes. This grants us full understanding of
a simulated physical environment, including position, orientation,
and size of floors, walls, and furniture. We picked four scenes from
the dataset covering small/large office/living room spaces, two for
training and two for validation. In our simulated environment,
we replicate the actions of a simulated user traversing the space
thoroughly and adequately. The simulated user would make stops at
random locations on a 3D Cartesian grid situated inside the room,
mimicking a variety of user poses and locations. These include,
but and not limited to, sitting on a sofa, standing in front of a
whiteboard, sitting around a table, all while facing a wall, furniture,
or empty space (see Figure 2 (a)). The RL agent is then designed to
learn 3D UI adaptations that maximize the reward for the presented
simulated user along the horizon.

We understand that such approaches may introduce limitations
depending on how well the simulated user behaves in comparison
with actual users. We argue that our approach could bring unique
benefits since real-world user trajectory data is largely unavailable
in well-labeled indoor spaces. Applying synthetic user data could
be a scalable strategy to train and gauge the feasibility of RL-based
methods. As an initial exploration, we started with one piece of
virtual content in the environment, the movement of which the RL
agent takes full control of.

3.2 RL Agent
We employ model-free RL which does not require prior knowledge
of the transition model. The RL agent leverages proximal policy op-
timization (PPO), a state-of-the-art deep policy gradient algorithm
which has demonstrated great potential in a variety of benchmarks
and applications [4, 35, 39]. In the following sections, we highlight
our designs of three core components: (1) observations (what infor-
mation the agent collects from the environment), (2) actions (what
actions the agent produces to control the placement of 3D UI in
MR), and (3) reward (how the agent is rewarded or penalized based
on its action).

3.2.1 Observations. In each time step 𝑡 , the agent receives the
following observations: (1) {𝑅𝑎𝑦1, 𝑅𝑎𝑦2 ...𝑅𝑎𝑦22}: twenty-two rays
evenly cast around the virtual content to collect information about
its surrounding in the current time step, including whether any ray
hits the physical environment mesh, and if so, the start/end point
of each ray hit, the hit object type, and the length of the ray. As
such, the RL agent observes the content’s relative position to its
surrounding environment; (2) {𝑃𝑜𝑠𝑐 , 𝑅𝑜𝑡𝑐 , 𝐷𝑖𝑟𝑐 } ∈ R3: the virtual
content’s position, rotation, and facing direction in the local space
of the environment; and (3) {𝑉𝑐 , 𝐷𝑖𝑠𝑡} ∈ R: the virtual content’s
local velocity and its euclidean distance in relation to the user; (4)
{𝑃𝑜𝑠𝑢 , 𝐷𝑖𝑟𝑢 } ∈ R3: the user’s current position and facing direction
in space (see Figure 1 left). The observations were normalized before
feeding into the network.

3.2.2 Action Space. Based on the observations, the RL agent pro-
duces a three-dimensional continuous action {𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 } ∈ [−1, 1],
symbolizing a 3D force vector to apply to the virtual UI content (see
Figure 1 right). With physic simulation, the virtual content could
be freely maneuvered, accelerated, and decelerated in 3D based on
the applied force vector. The RL agent only controls the content’s
position in space. The content was always oriented in a billboard
fashion to the users, ensuring maximum visibility. The action was
produced every five time steps.

3.2.3 Reward Design. Design of the reward functions plays critical
roles in enabling the RL agent to actively query to evaluate the qual-
ity of a given action or state. In line with previous work on MR lay-
out optimizations [10, 17, 26, 32], we aim for 3D UI placements that
are continuously visible, reachable, demonstrate realistic physical
behaviors, and stable. We designed the final reward to be the aggre-
gation of four rewards {𝑅visibility, 𝑅reachability, 𝑅physicality, 𝑅stability}:

𝑅visibility =

{
0.1 · 𝑃𝑝𝑒𝑟𝑐𝑒𝑛𝑡 , if 𝑃𝑝𝑒𝑟𝑐𝑒𝑛𝑡 > 0
−0.1, otherwise

(1)

𝑅reachability =

{
0.1 · 𝑒

(𝐷𝑖𝑠𝑡−0.5)4
0.05 , if UI is in front of the user

−0.1, otherwise
(2)

𝑅physicality =

{
−0.01, if UI overlaps with physical objects
0.01, otherwise

(3)

𝑅stability =


0, if the user is moving
0.01, if the user is stationary and 𝑉𝑐 < 0.3
−0.01, if the user is stationary and 𝑉𝑐 ≥ 0.3

(4)
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Figure 2: (a) Simulating user movement during training by dynamically interpolating an avatar along a 3D Cartesian grid facing
a random direction every few seconds; (b) the accumulative reward per episode (y-axis) in relation to the number of total steps
(x-axis); (c) the histogram of the reward distribution (x-axis) in relation to the total number of steps (y-axis).

We acknowledge that designing quality reward functions which
empower the agents to learn, explore, and exploit demands non-
trivial effort in the domains of RL. The current reward designwas de-
veloped after extensive empirical testing and benchmarks. 𝑃𝑝𝑒𝑟𝑐𝑒𝑛𝑡
represents the aggregation of percentages of the pixels that belong
to the content within the user’s camera render texture and the
proportion of the content that is visible for the current time step
(i.e., how much of the content is visible and how much it occupies
the user’s viewport); 𝐷𝑖𝑠𝑡 represents the current euclidean distance
from the content to the user;𝑉𝑐 represent the current velocity of the
content measured by meters/second. The reachability reward ap-
plied a kernel function, as inspired by [10]. The scale of the rewards
(i.e., 0.1, 0.01) followed prior guidelines [7, 8, 20] and our testing.
The thresholds for 𝑉𝑐 and 𝑃𝑝𝑒𝑟𝑐𝑒𝑛𝑡 were determined empirically.

3.3 Training Configuration & Results
The Unity3D engine was employed to simulate the 3D training en-
vironment, which consists of the simulated physical environment,
the user, and the virtual content. The ML-Agents toolkit2 was lever-
aged for training the RL agent [27]. The toolkit bridges information
collected in the Unity3D engine with a PyTorch backend to run the
deep RL training.

The PPO training network consists of (1) an encoder which en-
codes the observations and states of the simulation environment; (2)
an actor network to learn the optimal policy 𝜋 (𝑠𝑡 , 𝑎𝑡 ) for the agent,
and (3) a critic network which estimates the accumulated reward
𝑅(𝑡) for a given action. Both the actor and critic networks were
designed with two fully-connected hidden layers with 128 units.
The training was configured with six parallel training instances to
speed up the process. Each episode consisted of training for around
one thousand steps, concluding once the maximum step limit was
reached. The entire training lasted for five million steps in total,
taking around six hours on a desktop PC with a dedicated Nvidia
GeForce RTX3080 GPU, an Intel i9 24-core CPU, and a 64 GB RAM.
The learning rate was initialized as 3𝑒 − 4, which decayed linearly
until max step is reached so the training converges stably. We used
a buffer size of 409,600 and a batch size of 2,048 for the agents to
gather enough information from its experiences to learn the policy.
Figure 2 (b) shows the average accumulated reward per episode
in relation to the number of total steps, and Figure 2 (c) shows
the histogram distribution of the rewards. The reward increased

2https://github.com/Unity-Technologies/ml-agents

effectively during training while its standard deviation decreased,
indicating the successful learning of a policy by the RL agent.

4 PRELIMINARY EVALUATION
4.1 Setup
We conducted an initial evaluation on our model by placing the RL
agent in each of the four Replica environments (two training and
two validation environments) and running a simulation continu-
ously for ten thousand steps, with a simulated virtual user randomly
traversing the environment. The RL model was evaluated based on
three considerations:
• Heuristics: A set of heuristics to evaluate the placement con-
tinuously derived by the RL model, including visible UI % (i.e.,
average percent of the UI that is visible to the user each time
step), non-collision % (i.e., percentage of steps that the UI does
not overlap / collide with any physical object), distance offset
(i.e., average absolute distance offset from the UI to the user in
meters as compared to a half-meter baseline), and speed (i.e., the
average speed of the content per time step in meters per second).

• Generalizability: In addition to the training scenes, we picked
two additional indoor scenes as validation sets. We collected the
same heuristics for the different indoor scenes to see if the agent
could maintain ideal results while experiencing an environment
that it has no experience in.

• Dynamics: We introduced moving obstacles to symbolize mov-
ing people or objects that the RL-controlled UI should avoid. The
obstacle was represented by a 1 by 1 by 1 meter cube which
moved randomly in the environment (see Figure 3 (b)). We col-
lected the same heuristics with and without the presence of these
dynamic obstacles to gauge the ability of the model to react to
unexpected dynamic changes that take place around the users.

4.2 Results
As shown in Table 1, our results demonstrated the potential of
RL-based approach for adaptive 3D UI placement. In more static
environments, for the environments that the agent was trained
upon, more than 91% of the UI was continuously visible. It did
not collide with any environmental mesh more than 94% of the
time. It also maintained an arm-reachable distance to the users.
In the two validation environments that the agents have not ex-
perienced, our results show that UI could still stay in reasonable
locations with around 85% of itself being continuously visible to



Adaptive 3D UI Placement in Mixed Reality Using Deep Reinforcement Learning CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 3: (a) A snapshot of the training in which a UI driven by RL gauges its distances to surroundings and simulated user
poses; (b) a snapshot of the dynamic obstacle test, in which the content (blue square) maintains visibility, reachability and
avoiding collision with a presence of a randomly moving obstacle (red cube); (c) a snapshot of the placement result running our
trained RL model.
Table 1: The statistics showing the average value of each heuristic in the simulation testing (T for training, and V for validation).

Static Environments Dynamic Obstacles
Env1 (T) Env2 (T) Env3 (V) Env4 (V) Env1 (T) Env2 (T) Env3 (V) Env4 (V)

Visible UI % 93.28% 91.74% 86.50% 84.05% 85.27% 88.05% 83.38% 82.92%
Non-Collision % 94.09% 94.80 % 87.06% 82.18% 82.37% 90.32% 84.48% 85.86%
Distance Offset 0.06 0.04 0.11 0.21 0.11 0.17 0.22 0.31

Speed 0.68 0.72 0.69 0.74 0.72 0.75 0.77 0.84

the users each time step. It maintained a distance slightly further
away from the user, but still within a reachable distance. Similarly,
in dynamic settings when moving obstacles are introduced in the
environments, our model still achieved good placements in both
the training and validation environments with negligible perfor-
mance drops especially on the validation environments, which the
drops of visibility/physicality were capped at 3.12%. The UI could
maintain its reachability level even when the obstacle slides in view
(see Figure 3 (b)), and avoid most upcoming collisions to keep its
visibility to the users. As a result, the average distance from the
UI to the user slightly increased to compensate for such trade-offs.
This demonstrates the RL agent’s ability to adapt and generalize
to environments and certain degrees of unexpected changes that it
has not experienced before. However, we are aware that the higher
performance drops on the two training environments with dynamic
obstacles might be a sign of overfitting. Future research is required
to further validate our model in more diverse environments. Fig-
ure 3 (c) showcases the output of the model in real time, in which
RL places the UI while avoiding collision with the whiteboard, in
the mean time ensuring visibility and reachability to the users.

One limitation we observed is that the UI still moved at a rela-
tively high speed, with an average more than the level we set in the
reward function. One reason for this could be that our simulation
symbolized a busy setting in which users relocate frequently, so
there were less opportunities for the RL agent to experience the
static reward. Future work is needed in terms of how to further
increase the stability of the UI.

5 FUTURE OPPORTUNITIES
We are excited about the positive outcome of our initial exploration.
Here, we would like to highlight future opportunities and chal-
lenges for leveraging RL for content placement in dynamic 3D MR
environments:

• More considerations on reward formulations. As an initial explo-
ration, our current RL setup did not consider other aspects while
formulating the reward, such as semantics [10] and affordances
[9, 45] of physical objects, content type (e.g., 2D vs 3D, text-heavy
vs. images), spatial consistency [15], and user ergonomics [16].
Recent work has highlighted the benefits of such considerations.
Future research should take into account these aspects and ex-
plore how to incorporate them into current reward designs, as
well as how to further improve stability of the UI content.

• VR simulation vs. actual AR/MR settings. Our training assumes
good understanding of environmental and user status by simu-
lating AR/MR environments in VR. Training in actual AR/MR
spaces may surface more challenges due to the extensive trials
and errors RL needs and the imperfect understandings of the
physical world. Future work is needed in order to bridge the gaps
between simulated and actual user behaviors. For example, utiliz-
ing generative AI models, synthetic data could be generated from
user’s actual movement trajectories for training the RL agent [12].
As such, the agent could learn from common user behavioral
patterns to further optimize downstream performance.

• Multiple users and UIs. Our exploration demonstrated the initial
feasibility of RL controlling the placements of one piece of 3D
UI content. However, users frequently need access to multiple
applications with different relevancy to their tasks. To support
multiple content elements, multi-agent RL frameworks could
be leveraged for training cooperative behaviors among multiple
agents so they make the best trade-offs [13, 33]. Same strate-
gies may also apply to multi-user collaborative settings. Future
research could investigate the feasibility of these directions.

• RL with human feedback (RLHF) for preference learning. Research
has demonstrated that AI models with better performance may
not be considered more useful by the users [38]. Similarly, the
quality of 3D UI placements in MR from the user’s perspective
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may often be highly subjective. Thus, it is critical to derive place-
ments that align well with user expectations, preferences and
agency [34]. Recent work has revealed the potential of RL to in-
corporate human-in-the-loop preference learning with a handful
of queries, which generalizes well to new tasks without having
to retrain the models [11, 23]. This empowers preference elic-
itations on-the-go, which could be more flexible as compared
to constraints-based methods in optimizations. Future research
could further investigate the potential of RLHF for deriving per-
sonalized and preferable UI placements in MR spaces.

• Model-based RL. Our exploration leveraged model-free RL, which
could be a powerful technique for tackling real-world situations
when the environment is noisy, complex, and unpredictable. The
downside is model-free RL requires an extensive amount of trials
for the agent to learn a good policy. In the field of HCI, a wide
variety of models have been developed to predict human motor
and cognitive performances [5, 19, 24]. This makes model-based
RL viable as an alternative, in which the RL agent simulates
consequences of its actions without executing them to plan ahead
accordingly. As such, the training could be done more efficiently.
Recent work by Todi et al. demonstrated the feasibility of model-
based RL for adapting 2D menus leveraging models such as Fitts’
law [43]. Future research could further explore such directions for
MR use cases, in which user performance models are leveraged.

• Comparisons with optimization-based methods. Due to the scope
of this work, we did not compare RL with optimization-based
methods which demonstrated great potential in recent MR adap-
tive UI work, such as linear/integer programming [10, 22, 32],
simulated annealing [17], and genetic algorithms [25, 26]. Future
research is needed to explore the trade-offs among these method
in both experimentally-controlled and ecologically-valid settings
of MR UI scenarios.

• More explorations on generalizability. Though our results provide
initial evidence on the generalizability of our RL-based approach,
the training was conducted in less diverse environments. Intro-
ducing a higher degree of variability and intricacy may poten-
tially facilitate a more robust learning process (e.g., multi-floor
environments with moving bystanders ), allowing the model to
adapt more effectively to diverse UI scenarios. We aim to simulate
more accurate real-world scenarios, thereby enabling the model
to acquire a broader range of behaviors.

6 CONCLUSION
In this work, we explored the potential of reinforcement learning
(RL) for 3D user interface (UI) placement in mixed reality (MR)
environments. By having a RL agent interactively engaging with a
simulated physical environment with trials and errors, it could learn
a policy that assist the placements of 3D UIs in order to maximize
the utility for the users. We trained a RL agent that is capable
of assisting the placements of 3D UI continuously, demonstrated
the potential of our approach through a preliminary simulated
evaluations that explore the generalizability of themodel to new and
dynamic environments, and called attention to challenges such as UI
stability and overfitting. Based on our results, we further highlight
opportunities for future research that explore RL for personalized
and adaptive information displays in MR environments.
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